
Tod Golding, Partner Solutions Architect
todg@amazon.com

Agenda

• SaaS on AWS
• Framework Overview
• Framework Components
• Guiding Principles

Why SaaS?
Cloud software will grow to $112.8
billion by 2019 at a compound annual
growth rate of 18.3% and will
significantly outpace traditional
software product delivery, growing
nearly five times faster than the
software market as a whole and
becoming the significant growth driver
to all functional software markets. …
30% of all new business software
purchases will be of service-enabled
software.”

Customers of all
sizes want their
software delivered
to them as SaaS

IDC Research, Inc. "Worldwide SaaS and Cloud Software 2015–2019
Forecast and 2014 Vendor Shares” Aug 2015

Why SaaS on AWS?

SaaS characteristics:
ü Priced on usage or users
ü Self-service on-demand
ü Multi-tenant, shared

infrastructure
ü Elastic usage

AWS characteristics:
ü Pay only for what you use
ü Resources on-demand
ü Highly scalable and

durable services
ü Auto-scaled and scriptable

resources

SaaS != hosted application management

1. AWS flexibility à Quickly respond to
changes in application needs in a cost
effective way

2. AWS innovation à Keep up with latest
industry trends without building it all yourself

3. AWS ecosystem à Leverage the
experience and knowledge of others on the
AWS platform

SaaS on AWS lets you focus on your customers

Framework Overview
A review of the key goals and elements of the SaaS Enablement
Framework.

Framework Goals

• Provide a roadmap for the development,
operation, and launch of SaaS offerings on AWS

• Classify SaaS best practices and design tradeoffs
• Be a catalyst for SaaS community solution

development and discovery
• Streamline and accelerate development of SaaS

solutions

Framework Scope

• Access
• Build
• Manage
• Profile
• Optimize
• Migrate/Transform
• Sell

A collection of core concepts and practices that guide the delivery, design, and
operation of SaaS solutions on AWS

Where SaaS Fits

Se
cu

rit
y

&
Id

en
tit

y

Ap
pl

ic
at

io
n

Sc
al

e
&

Av
ai

la
bi

lit
y

Ap
pl

ic
at

io
n

Se
rv

ic
es

St
or

ag
e

Se
rv

ic
es

Bu
ild

 &
 D

ep
lo

ym
en

t A
ut

om
at

io
nTenant Isolation

Data Partitioning

Tenant-Level Metering

Tenant Usage Analytics

Tenant Configuration

Tenant SLAs

Tenant Provisioning

Tenancy and business considerations introduce a layer of SaaS specific best
practices that touch most dimensions of the AWS stack of services

Tenant Monitoring

Common Solutions to Common Problems

Billing

Competitive IP

Metering

AnalyticsMonitoring

Administration

Authentication &
Authorization

Provide examples of custom and/or provider-supported integrations that can
accelerate SaaS adoption

• Enumerates and defines a fundamental
set of SaaS core services

• Establishes roles and boundaries for
each service

• Provides examples of custom and/or
partner-supported service integrations

• Promotes a model for ecosystem
extension and collaboration

• Put the focus where it should be—on
competitive IP

Monitoring Authentication/Authorization

Metering Billing

Analytics

Leveraging APN Partner Solutions
Providing tenant aware integrations of provider tools that address core functionality

Key Framework Tenets

• Don’t separate business from the technology
• Place a premium on analytics and metering
• Profile your tenant’s security expectations

– Understand your near and long-term isolation needs

• Model compliance requirements early
• Make operational efficiency and visibility a priority
• Make agility a priority

Access
Key considerations for managing and controlling access to SaaS
solutions

Managing the Front Door

Tenant
Management

Tenant
Provisioning

Application
Access

Users

API
Access

Developers

Subscription
Management

System
Admin

Administrator

Tenant
On-Boarding

Account
Management

User
Management

• Authentication
• Authorization
• Identity Management
• Throttling

• On-boarding
• Provisioning
• Billing

• Password management
• User configuration
• Tenant lifecycle

Tenant
Admin

Administrator

SaaS Identity Landscape

Identity Providers

Customer Database

LDAP/Active Directory

AWS Directory Service
Web Identity Federation

Identity Brokers

Cognito

Multi-Factor
Authentication

Apps

AWS cloud

1

2

3
4

5

Centralized SSO On-Boarding

SaaS Application Dashboard

User

Identity Design Strategies

• Identity should be a day one consideration
• Limit the number of identities a user needs to manage
• Let the IdPs own overhead and risk of storing identity

and managing authentication
• Leverage identity brokers to decouple from growing

number of IdPs
• Store application-specific attributes in a database linked

to a user
• RBAC applied to all layers of access

API Design Considerations

• Minimize cross-tenant impacts
• Leveraging API throttling

– A single tenant should never disproportionately degrade
performance

• Building in fault tolerance
– Applying tenant circuit breakers
– Leveraging asynchronous messaging
– Supporting partial outages

• Tenant specific SLAs

Subscription Management (Billing)

• Developing a tiered pricing model
– Correlating pricing with cost footprint
– Common patterns for modeling pricing

• Leveraging metering data
– Using meter data to control resource utilization
– Putting hard caps on consumption
– Promoting and facilitating tier upgrades

• Integrating with provider billing solutions
– Configuring and enforcing billing plans
– Integrating with partner billing solutions

Provisioning Tags for Billing

• Assign tags to AWS resources
during provisioning

• Leverage tags as model for
aggregation tenant load

• Enables use of cost allocation
reports

Build
A review of the common patterns and practices that are used to
design, architect, deploy, and validate SaaS solutions on AWS

Build Overview

Design Partition

Tenant 2

Tenant 1

Deploy

Developer

Design and Tenant Profiling

• SaaS design must be aligned with tenant profile
• Assess and capture tenant requirements

– What are the security requirements of your tenants?
– What levels of isolation are relevant to your tenants?
– Do your tenants need to meet specific compliance criteria?
– What is the profile of typical tenant load (spikey, flat, etc.)
– What kind of SLA’s are expected of your application?
– How much customization is needed for each tenant?
– What features will distinguish each tier of your SaaS offering?

Designing Multi-Tenant Services

Service Authorization (RBAC)

Your Service Code

Data Access

Se
rv

ic
e

Li
fe

cy
cl

e
(c

on
fig

, b
oo

ts
tra

pp
in

g,
 d

is
co

ve
ry

)

Logging AnalyticsTe
na

nt

C
on

fig
ur

at
io

n

Metrics

Tenant Context
Injected

Tenant Context
Injected

• Abstracting away tenant awareness & policies
• Maximizing developer productivity
• Centrally managed policies/configuration

Sy
st

em

C
on

fig
ur

at
io

n

Service Scaling & Decomposition Strategies

AWS Lambda Functions
Amazon ECS Container ClusterAmazon EC2 Instances

• Higher density of services improves
SaaS agility and availability

• More services creates more granularity
for tuning elasticity & tenant experience

• Service density adds complexity to
deployment

• Cost considerations influence model

Application Design Model: Variation 1
N-Tier Web Application Framework (single or multi-tenant)

Web Tier

App Tier

Data Access Tier

• Aligns with n-tier frameworks
• Scaling is coarse-grained
• Tier = unit of scaled
• Limited ability to design for failures
• Limited ability to tune tenant experience
• Single, shared data representation
• Common migration pattern

Application Design Model: Variation 2

Container
Instance

Container
Instance

Containerized Microservices

Multi-tenant
storage

Service

Multi-tenant
storage

Service

• Services run in containers
• Cluster scales dynamically based

on service and tenant load
• Each service is autonomous and

owns its own storage model and
multi-tenancy strategy

• Finer grained services
• More compelling isolation models
• More custom tenant experience

REST API

Application Design Model: Variation 3
Serverless Microservices

Static web content

AWS Lambda Functions

• Each function executes in a tenant
context

• Serverless model optimizes spend
a minimizes management footprint

• New models needs for profiling
and assessing system health

• Trigger Lambda function from other
Lambda functions

• Programming model changes
• Managing failures

Amazon
CloudFront

• Authentication/authorization
• Throttling managed by API
• Metering data captured

Storage Services

Application Design Model: Variation 4
Hybrid of EC2, ECS, and Lambda scaling

Auto-scaled EC2 instances
Container
Instance

Container
Instance

ECS cluster of microservices

Lambda functions

Partition

Tenant Tenant

Tenant Partitioning

Tenant 2

Tenant 1

Data Partitioning

Partitioning Patterns

Tenant Tenant

Tenant Tenant

Tenant TenantTenant

Tenant TenantTenant

Tenant TenantTenant

Silo Bridge Pool

Partitioning Spectrum
Bridge ModelSilo Model Pool Model

• Security
• Dedicated infrastructure
• No cross-tenant impacts
• Tenant-specific tuning
• Tenant level availability

• Agility compromised
• Management complexity
• Cost
• Deployment challenges
• Analytics/metering aggregation

• Agility
• Cost optimization
• Centralized management
• Simplified deployment
• Analytics/metering aggregation

• Cross-tenant impacts
• Compliance challenges
• All or nothing availability

Pros

Cons

Pros

Cons

Tenant Isolation Models
Each application design scheme can be deployed in a single tenant
model:

Full Stack Isolation
Container Isolation

Container
Instance

Container
Instance

Container
Instance

Container
Instance

Tenant 1 Tenant 2

Web Tier

App Tier

Tenant 1

Web Tier

App Tier

Tenant 2

Hybrid Isolation Model
Mix of single and multi-tenant models

Web Tier

App Tier

Tenant 1

Web Tier

App Tier

Tenant 2

Web Tier

Tenants 3 … N
(multi-tenant shared)

App Tier

Web Tier

App Tier: Tenant 1 App Tier: Tenant 2

Single Tenant Application Layer

Account-Based Tenant Isolation
Tenant 1 (AWS Account A) Tenant 2 (AWS Account B)

Auto Scaling Group

Web Server Web Server

Auto Scaling Group

App Server App Server

Availability Zone 1

Availability Zone 2

Region

Auto Scaling Group

Web Server Web Server

Auto Scaling Group

App Server App Server

Availability Zone 1

Availability Zone 2

Region

VPC-Based Tenant Isolation

Subnet-Based Tenant Isolation

Tenant 1 – App Subnet

Tenant 1 – Web Subnet

Tenant 2 – App Subnet

Tenant 2 – Web Subnet

Data Partitioning Models

Separate database
for each tenant

Tenant 1 Tenant 2

Storage Storage

Tenant 1

Tenant 2

Schema

Schema

Single database,
multiple schemas

Tenant Id Item Id

A93-9494 239

B38-3929 3434

Schema

Shared database,
single schema

Amazon RDS Data Partitioning Models

Tenant 1
Instance

Tenant 2
Instance

Tenant 2

Tenant 1

Instance Per Tenant Table Per Tenant Multi-Tenant Tables

Tenant 1 84049-49 True

Tenant 2 82-84-949 False

Tenant 1 Bob Smith

Tenant 2 Lisa Johnson

Tables partitioned by tenant id

Amazon DynamoDB Data Partitioning Models

Linked Account
Per Tenant

Tenant Indexed
Tables

Tenant-Based
Table Names

Tenant 1
Linked Acct: xxx-xxxx

TableX TableY

Tenant 1
TableX

Tenant 2
TableX

Tenant 3
TableX

Hash Key
Tenant 1
Tenant 2
Tenant 1
Tenant 4

Hash Key
Tenant 3
Tenant 1
Tenant 1
Tenant 2

Table-X

Table-Y

Tenant 2
Linked Acct: xxx-xxxx

TableX TableY

Partitioning & AWS Tools

AWS Identity & Access
Management

Amazon
RDS

CloudWatch
Metrics Amazon

DynamoDB

• Partitioning influences granularity
of access, metrics, and control

• Control access to tenant
instances and tables

• Capture tenant level metrics
• Mange and monitor storage

resources

Storage Scale & Operational Footprint

• Minimizing operational costs and complexity
• AWS storage services address key needs of SaaS

solutions
– Built-in mechanisms for safe-guarding high availability
– Granular ability to tune IOPS
– Ability to configure data backups and snap shots
– Support for a variety of partitioning schemes

• A wide spectrum of storage services to address
different solution profiles
– Ability to balance cost profile with storage demands

Deploy

Testing ProvisioningCI/CD

• Deployment automation is a the engine of SaaS agility
• View this as your competitive advantage
• Code and data must evolve in real-time
• Expect an ongoing investment in tooling and automation

Tenant Deployment Models

Commit Unit
Test

System
Test QA Staging Prod

Tenant 1

Commit Unit
Test

System
Test QA Staging Prod

Commit Unit
Test

System
Test

Commit Unit
Test

System
Test

Commit Unit
Test

System
Test

QA Staging Prod

Service
Deployment

Multi-tenant Deployment

Single Tenant Deployment

Tenant 2

SaaS Deployment Tenets
• Agility, agility, agility
• Minimize tenant variation
• Centralize, version, and control tenant configuration and deployment
• Share and extend deployment automation wherever possible
• Prefer more granular deployments
• Never accept downtime
• Invest in agile data migration and versioning strategies
• Expect to build and continually evolve your own tooling
• Repeatability = stability = agility

AWS DevOps Tooling

MonitorProvisionDeployTestBuildCode

AWS Elastic Beanstalk

AWS CloudFormationAWS CodeDeploy

AWS
CodeCommit AWS CodePipeline AWS OpsWorks

Testing SaaS Solutions
• Profiling & modeling tenant loads

– Building an application scaling profile and SLAs
– Simulating tenant loads, elasticity and application failures
– Validating pricing/metering tiers

• Security & isolation testing
– Validating role-based access limits on cross-tenant access
– Validating tenant isolation schemes
– Assessing data security constraints

• Validating storage scaling
– Testing IOPS throughput and policies
– Testing bulk operations

Manage
Best practices, tools, and techniques that are commonly applied to
manage a SaaS environment

Monitoring & Management

• SaaS sets a higher bar for management & monitoring
• Views of both infrastructure and application health
• Ability to view health and activity with tenant context
• Instrumenting logs with application and tenant metrics
• Support for tenant policies for alerts/alarms

SaaS Support Considerations

• SaaS demands a robust support solution
• Provider tools that streamline the support

lifecycle
• Instrumenting applications with support hooks
• Mapping support SLAs to tiered pricing plans
• Creating a cohesive customer experience that

connects internal and AWS support processes

System Administration

System Admin

Authentication &
Authorization

System
Management

Console

System Admin User
Management (RBAC)

• Tenant lifecycle management
• Tenant status/history
• Tenant policy management
• Tenant notification/messaging
• System alerts/alarms

Tenant Administration

Tenant Admin

Authentication &
Authorization

Tenant
Management

Console

Tenant Admin User
Management (RBAC)

• App user management
• App user activity tracking
• App policies and configuration

Profile
Continually evaluating and characterizing tenant consumption and
activity.

Profiling Sources

• Usage analytics
– Insights into application usage data and patterns
– Ability to assess global and tenant-centric activity
– Identify paths and hot spots that may be undermining adoption
– Inform prioritization of features

• Resource metering
– Correlating tenant activity with resource consumption
– Identifying resource bottlenecks
– Profile costs and informing price modeling
– Capping resource consumption

Resource Consumption

Application Activity

Capturing & analyzing analytics

Storage MetricsApp Service Metrics Compute Metrics

• Analyze tenant flows
• Assess consumption

metrics

Page Load Metrics User Clicks REST Calls

Optimize
Refining the cost and performance footprint of your SaaS
application and optimizing target tenants and workflows

Optimizing SaaS Environments
• Optimizing costs

– Profiling tenant activity to establish baseline minimum consumption
– Applying RIs and spot instances
– Tier optimized service consumption

• Optimizing tenant experience
– Providing tenant experience optimizations
– Optimizing based on load/activity
– Optimizing based on tenant tier

• Optimizing availability and performance
– Profiling and responding to spikey loads
– Tuning metrics and scaling policies

• Timing and optimizing bulk operations

Scenario Driven Storage Optimization

Tenant 1

DynamoDB RDS S3

1. Get orders from yesterday
2. Get orders for last 30 days
3. Get all orders

Data Access

Tenant 2

DynamoDB RDS

Data Access

1
2

3 1, 2 3

Tenant
Policies

Scenario Driven Storage Optimization

Tenant 1 Tenant 2

API’s

Tenant
Policies

Services

Data Access

Tenant Load Driven Optimization

Tenant 1 Tenant 2 Tenant 3

Tenant Id Last Accessed

Tenant-1 1/1/2015 09:03:01

Tenant-2 1/1/2015 10:41:53

Tenant-4 1/1/2015 11:39:24

Tenant Cache Status

Cache
Manager

2
1

Data Access

3 4

System optimizes based on
tenant activity

5

Migrate/Transform
A review of common strategies and value systems that are applied
when migrating applications to a SaaS model

Migration Patterns

• Silo tenant migration
– Existing app moves as-is and is deployed as isolated single tenants
– Billing, metrics, and analytics surround existing stack
– Tenant context instrumented into logging, metrics, etc.

• Layered migration
– Layers of the application stack are iteratively moved to multi-tenancy
– Gradual introduction of new, multi-tenant app services
– Storage migrated to multi-tenant model

• Data migration
– Migrating data to multi-tenant models

Microservice Hybrid Migration

Web Tier

App Tier

Container
Instance

Container
Instance

Multi-tenant
storage

Service

Multi-tenant
storage

Service

Carve out and migrate
microservices

Operational Migration Considerations

• Adopting new on-boarding models
– Transitioning to multi-tenant authentication/authorization
– Integrating billing support

• Migrating to tenant aware operations
– Adding tenant context to management & monitoring
– Introducing tenant aware logging
– Adding support for tenant configuration & management
– Retrofitting metering and analytics

• Business migration
– Capturing tenant profiles and defining tiered pricing models
– Customer transition strategies

Sell
Patterns for packaging and promoting SaaS offerings with
emphasis on accelerating customer acquisition

Market

• Innovation sandbox
– Credits

• Test drive
• Go-to-market resources
• Lead generation campaigns
• Marketplace presence

Guiding Principles
A high level collection of SaaS focused principles that should guide
and shape any SaaS solution

People, Process, and Culture

• SaaS is a lifestyle
– Adopting a fail fast approach
– Customer feedback and product strategy happens in real-time
– Take pride in your ability to pivot and react
– Expect your business model to be fluid
– Drive loyalty through rapid response and constant evolution

• Technology and process must be enablers
– Agility must be baked into architecture, design, and deployment
– Migration must be constant and painless
– Zero tolerance for any notion of down time
– Ability to package offerings that align with emerging tenant profiles

Common Pitfalls

• Making analytics and metering and afterthought
• Under-investing in management & monitoring
• Allowing noisy tenants to undermine overall experience
• Coarse-grained services undermine scale and cost footprint
• Not separating data read from data write
• Deprioritizing SLA policies
• Deployments that require down time
• Underestimating the cultural dimensions of SaaS
• Under-investing in deployment automation and testing

